Barto, Libor and Kozik, Marcin and Maróti, Miklós and McKenzie, Ralph and Niven, Todd (2009) Congruence modularity implies cyclic terms for finite algebras. Algebra Universalis, 61 (3-4). pp. 365-380. ISSN 0002-5240
|
Text
1116616.pdf Download (222kB) | Preview |
Official URL: http://dx.doi.org/10.1007/s00012-009-0025-z
Abstract
An n-ary operation f : A(n) -> A is called cyclic if it is idempotent and f(a(1), a(2), a(3), ... , a(n)) = f(a(2), a(3), ... , a(n), a(1)) for every a(1), ... , a(n) is an element of A. We prove that every finite algebra A in a congruence modular variety has a p-ary cyclic term operation for any prime p greater than vertical bar A vertical bar.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA72 Algebra / algebra |
Depositing User: | Erika Bilicsi |
Date Deposited: | 04 Apr 2013 10:12 |
Last Modified: | 04 Apr 2013 10:12 |
URI: | http://real.mtak.hu/id/eprint/4596 |
Actions (login required)
Edit Item |