REAL

Congruence modularity implies cyclic terms for finite algebras

Barto, Libor and Kozik, Marcin and Maróti, Miklós and McKenzie, Ralph and Niven, Todd (2009) Congruence modularity implies cyclic terms for finite algebras. Algebra Universalis, 61 (3-4). pp. 365-380. ISSN 0002-5240

[img]
Preview
Text
1116616.pdf

Download (222kB) | Preview

Abstract

An n-ary operation f : A(n) -> A is called cyclic if it is idempotent and f(a(1), a(2), a(3), ... , a(n)) = f(a(2), a(3), ... , a(n), a(1)) for every a(1), ... , a(n) is an element of A. We prove that every finite algebra A in a congruence modular variety has a p-ary cyclic term operation for any prime p greater than vertical bar A vertical bar.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika
Q Science / természettudomány > QA Mathematics / matematika > QA72 Algebra / algebra
Depositing User: Erika Bilicsi
Date Deposited: 04 Apr 2013 10:12
Last Modified: 04 Apr 2013 10:12
URI: http://real.mtak.hu/id/eprint/4596

Actions (login required)

Edit Item Edit Item