REAL

Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions

Zámborszky, Judit and Szikriszt, B. and Gervai, J. Z. and Pipek, O. and Póti, Á. and Szállási, Zoltán and Szüts, Dávid (2016) Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions. ONCOGENE. pp. 1-10. ISSN 0950-9232

[img]
Preview
Text
onc2016243a.pdf

Download (633kB) | Preview

Abstract

Loss-of-function mutations in the BRCA1 and BRCA2 genes increase the risk of cancer. Owing to their function in homologous recombination repair, much research has focused on the unstable genomic phenotype of BRCA1/2 mutant cells manifest mainly as large-scale rearrangements. We used whole-genome sequencing of multiple isogenic chicken DT40 cell clones to precisely determine the consequences of BRCA1/2 loss on all types of genomic mutagenesis. Spontaneous base substitution mutation rates increased sevenfold upon the disruption of either BRCA1 or BRCA2, and the arising mutation spectra showed strong and specific correlation with a mutation signature associated with BRCA1/2 mutant tumours. To model endogenous alkylating damage, we determined the mutation spectrum caused by methyl methanesulfonate (MMS), and showed that MMS also induces more base substitution mutations in BRCA1/2-deficient cells. Spontaneously arising and MMS-induced insertion/deletion mutations and large rearrangements were also more common in BRCA1/2 mutant cells compared with the wild-type control. A difference in the short deletion phenotypes of BRCA1 and BRCA2 suggested distinct roles for the two proteins in the processing of DNA lesions, as BRCA2 mutants contained more short deletions, with a wider size distribution, which frequently showed microhomology near the breakpoints resembling repair by non-homologous end joining. An increased and prolonged gamma-H2AX signal in MMS-treated BRCA1/2 cells suggested an aberrant processing of stalled replication forks as the cause of increased mutagenesis. The high rate of base substitution mutagenesis demonstrated by our experiments is likely to significantly contribute to the oncogenic effect of the inactivation of BRCA1 or BRCA2.Oncogene advance online publication, 25 July 2016; doi:10.1038/onc.2016.243. © 2016 The Author(s)

Item Type: Article
Subjects: R Medicine / orvostudomány > R1 Medicine (General) / orvostudomány általában > R850-854 Experimental medicine / kisérleti orvostudomány
R Medicine / orvostudomány > RC Internal medicine / belgyógyászat > RC0254 Neoplasms. Tumors. Oncology (including Cancer) / daganatok, tumorok, onkológia
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 24 Jan 2017 09:26
Last Modified: 24 Jan 2017 09:26
URI: http://real.mtak.hu/id/eprint/46158

Actions (login required)

Edit Item Edit Item