REAL

The proteome response of Hordeum spontaneum to salinity stress

Fatehi, F. and Hosseinzadeh, A. and Alizadeh, H. and Brimavandi, T. (2013) The proteome response of Hordeum spontaneum to salinity stress. Cereal Research Communications, 41 (1). pp. 78-87. ISSN 0133-3720

[img] Text
crc.2012.0017.pdf
Restricted to Repository staff only until 31 March 2033.

Download (154kB)

Abstract

Hordeum spontaneum (wild barley) is a good gene source to improve salt tolerance in barley because it rapidly hybridizes and recombines with barley cultivars. Proteomics can assist in identifying proteins associated with a certain environmental or developmental signal. We employed a proteomic approach to understand the mechanisms of plant responses to salinity in a salt tolerant accession of H. spontaneum. At the 4-leaf stage, wild barley plants were exposed to 0 (control treatment) or 300 mM NaCl (salt treatment). The salt treatment lasted 3 weeks. Total proteins of leaf 4 were extracted and separated by two-dimensional gel electrophoresis. More than 500 protein spots were reproducibly detected. Of these, 29 spots showed significant differences between salt treatment and control. Using MALDI-TOF-TOF MS, we identified 29 cellular proteins, which represented 16 different proteins. These were classified into six categories and a group with unknown biological function. The proteins identified were involved in many different cellular functions. Three spots were identified as unknown proteins; searching in the NCBI database revealed that there was a 71% match with clathrin assembly protein putative [Ricinus communis], a 67% match with actin binding protein [Zea mays], and a 66% match with phosphatidylinositol kinase [Arabidopsis thaliana]. Other proteins identified included ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), oxygen-evolving enhancer protein (OEE), photosystem II reaction centerWprotein (Psbw), ribosomal proteins, chloroplast RNA binding protein (ChRBP), superoxide dismutase (SOD), malate dehydrogenase (MDH), thioredoxin h (Trx), nucleoside diphosphate kinase (NDPK), profilin, translationally-controlled tumor protein (TCTP), polyamine oxidase (PAO) and universal stress protein family (USP).

Item Type: Article
Subjects: S Agriculture / mezőgazdaság > S1 Agriculture (General) / mezőgazdaság általában
Depositing User: Ágnes Sallai
Date Deposited: 20 Apr 2017 11:20
Last Modified: 20 Apr 2017 11:20
URI: http://real.mtak.hu/id/eprint/51610

Actions (login required)

Edit Item Edit Item