REAL

A multiple linear statistical model for estimating mean maximum urban heat island

Bottyán, Zsolt and Unger, János (2003) A multiple linear statistical model for estimating mean maximum urban heat island. THEORETICAL AND APPLIED CLIMATOLOGY, 75. pp. 233-243. ISSN 0177-798X

[img] Text
1149801.pdf
Restricted to Registered users only

Download (487kB) | Request a copy

Abstract

This study examines the spatial and quantitative influence of urban factors on the surface air temperature field of the medium-sized of Szeged, Hungary, using mobile measurements under different weather conditions in the periods of March 1999–February 2000 and April–October 2002. Efforts have been concentrated on the development of the urban heat island (UHI) in its peak development during the diurnal cycle. Tasks included: (1) determination of spatial distribution of mean maximum UHI intensity and some urban surface parameters (built-up and water surface ratios, sky view factor, building height) using the standard Kriging procedure, as well as (2) development of a statistical model in the so-called heating and non-heating seasons using the above mentioned parameters and their areal extensions. In both seasons the spatial distribution of the mean maximum UHI intensity fields had a concentric shape with some local irregularities. The intensity reaches more than 2.1 °C (heating season) and 3.1 °C (non-heating season) in the centre of the city. For both seasons statistical model equations were determined by means of stepwise multiple linear regression analysis. As the measured and calculated mean maximum UHI intensity patterns show, there is a clear connection between the spatial distribution of the urban thermal excess and the examined land-use parameters, so these parameters play an important role in the evolution of the strong UHI intensity field. From the above mentioned parameters the sky-view factor and the building height were the most determining factors which are in line with the urban surface energy balance. Therefore in the future, using our model it will be possible to predict mean maximum UHI intensity in other cities, which have land-use features similar to Szeged.

Item Type: Article
Subjects: Q Science / természettudomány > QE Geology / földtudományok > QE04 Meteorology / meteorológia
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 13 Jun 2013 14:53
Last Modified: 13 Jun 2013 14:53
URI: http://real.mtak.hu/id/eprint/5591

Actions (login required)

Edit Item Edit Item