Goldston, D.A. and Graham, S.W. and Pintz, János and Yildrim, C.Y. (2009) Small gaps between products of two primes. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 98 (3). pp. 741774. ISSN 00246115

Text
0609615.pdf Download (341kB)  Preview 
Abstract
Let qn denote the nth number that is a product of exactly two distinct primes. We prove that qn+1  qnle; 6 infinitely often. This sharpens an earlier result of the authors, which had 26 in place of 6. More generally, we prove that if ? is any positive integer, then (qn+1  qn) ≤ eγ(1 + o(1)) infinitely often. We also prove several other related results on the representation of numbers with exactly two prime factors by linear forms. © 2008 London Mathematical Society.
Item Type:  Article 

Subjects:  Q Science / természettudomány > QA Mathematics / matematika 
SWORD Depositor:  MTMT SWORD 
Depositing User:  MTMT SWORD 
Date Deposited:  05 Sep 2017 20:46 
Last Modified:  05 Sep 2017 20:46 
URI:  http://real.mtak.hu/id/eprint/61545 
Actions (login required)
Edit Item 