REAL

Biomass production of five biofuel crops and phytotoxicity to seed germination and early growth of nine plants grown in polycyclic aromatic hydrocarbons heavily contaminated soil

Paquin, D. and Yanagihara, K. and Grannis, W. E. and Li, Q. X. (2012) Biomass production of five biofuel crops and phytotoxicity to seed germination and early growth of nine plants grown in polycyclic aromatic hydrocarbons heavily contaminated soil. Acta Phytopathologica et Entomologica Hungarica, 47 (2). pp. 385-402. ISSN 0238-1249

[img] Text
aphyt.47.2012.2.18.pdf
Restricted to Repository staff only until 31 December 2032.

Download (452kB)

Abstract

There are millions of acres of chemically contaminated lands on which biofuel crops can be planted for dual purposes of biomass production and land reclamation. Phytoremediation is a proven technology for environmental cleanup, particularly in tropical and sub-tropical environments. There are advantages in that multiple growing seasons and increased soil temperature accelerate the clean-up processes. Seeds of 13 tropical and temperate plant species were germinated and grown for 10 days in petroleum contaminated soil containing 3148 μg/g of polycyclic aromatic hydrocarbons (PAHs). The results indicate that the presence of PAHs enhanced both emergence and early seedling growth with some of the species tested. Kiawe tree germination rate was 7-fold higher in PAH soils than that in the control media. The potential biofuel grasses sugarcane, banagrass, switch grass, vetiver and miscanthus showed degradation of PAHs in at least one of the amended PAH-contaminated soils in 35 days of growth. Banagrass biomass production in all the treatments was far greater than the other four species. No plant control pots were most effective to reduce PAHs in the un-amended PAH soil. Vetiver degraded all PAHs when planted in the PAH soil amended with 1/3 of the Promix soil (a 2/3 PAH soil volume). Among five biofuel crops tested, banagrass produced a tripled amount or more of biomass than all the other species in the LF-14 un-amended PAH soil or its amended soils. The dry weight (dw) biomass of banagrass averaged ∼3 g/day/3-L pot in all PAH soils and 6 g/day/3-L pot in Promix as harvested at the ground level. Banagrass in 90-cm spacing could produce approximately 30 tons/ha/yr of dry matter in a 70-day crop season. The results warrant further investigation of biofuel crops for phytoremediation and biomass production purposes. Future plantings may be considered using these and other crops in combination with applicable contaminants to help clean up the contaminated environment and reduce petroleum dependency.

Item Type: Article
Subjects: Q Science / természettudomány > QH Natural history / természetrajz > QH540 Ecology / ökológia
Q Science / természettudomány > QK Botany / növénytan > QK10 Plant physiology / növényélettan
Q Science / természettudomány > QL Zoology / állattan > QL01 Systematic zoology / állatrendszertan
Depositing User: xBarbara xBodnár
Date Deposited: 05 Nov 2017 15:25
Last Modified: 05 Nov 2017 15:25
URI: http://real.mtak.hu/id/eprint/67067

Actions (login required)

Edit Item Edit Item