Sándor, Csaba and Yang, QuanHui (2018) On some properties of representation functions related to the ErdősTuran conjecture. EUROPEAN JOURNAL OF COMBINATORICS, 71. pp. 222228. ISSN 01956698

Text
On some properties of representation function.pdf Download (153kB)  Preview 
Abstract
For a set A\subsetN and n\in \mathbb{N}, let R_A(n) denote the number of ordered pairs (a, a′) ∈ A × A such that a + a′ = n. The celebrated Erdős–Turán conjecture says that, if R_A(n) ≥ 1 for all sufficiently large integers n, then the representation function R_A(n) cannot be bounded. For any positive integer m, Ruzsa’s number R_m is defined to be the least positive integer r such that there exists a set A\subset Z_m with 1 \le R_A(n) \le r for all n\in Z_m. In 2008, Chen proved that R_m \le 288 for all positive integers m. Recently the authors proved that R_m ≥ 6 for all integers m \ge 36. In this paper, for an abelian group G with G = m, we prove that if A\subset G satisfies R_A(g) \le 5 for all g\inG, then {g : g\inG, R_A(g) = 0} ≥ \frac{m}{4} − \sqrt{5m}. This improves a recent result of Li and Chen. We also give upper bounds of {g : g\in G, R_A(g) = i} for i = 2, 4.
Item Type:  Article 

Subjects:  Q Science / természettudomány > QA Mathematics / matematika > QA71 Number theory / számelmélet 
Depositing User:  Dr Csaba Sándor 
Date Deposited:  27 Sep 2018 19:52 
Last Modified:  27 Sep 2018 19:52 
URI:  http://real.mtak.hu/id/eprint/85708 
Actions (login required)
Edit Item 