He, Bo and Pink, István and Pintér, Ákos and Togbé, Alain (2013) On the diophantine inequality |X^2-cXY^2+Y^4|<=c+2. GLASNIK MATEMATICKI, 48 (2). pp. 291-299. ISSN 0017-095X
|
Text
HPPT-Revised.pdf Download (161kB) | Preview |
Abstract
Generalizing some earlier results, we find all the cop- rime integer solutions of the Diophantine inequality |X2 - cXY 2 + Y 4| <= c + 2; (X; Y ) = 1; except when c == 2 (mod 4), in which case we bound the num- ber of integer solutions. Our work is based on the results on the Diophantine equation AX4 - BY 2 = C; where A;B are positive integers and C 2 �f1; 2; 4g.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Diophantine equations, quartic equations. |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 06 Feb 2014 15:17 |
Last Modified: | 08 Feb 2014 07:22 |
URI: | http://real.mtak.hu/id/eprint/10009 |
Actions (login required)
![]() |
Edit Item |