REAL

Isometries on positive definite operators with unit Fuglede-Kadison determinant

Gaál, Marcell Gábor and Nagy, Gergő and Szokol, Patrícia Ágnes (2019) Isometries on positive definite operators with unit Fuglede-Kadison determinant. TAIWANESE JOURNAL OF MATHEMATICS, 23 (6). pp. 1423-1433. ISSN 1027-5487

[img]
Preview
Text
euclid.twjm.1552013881.pdf

Download (271kB) | Preview

Abstract

In this paper we explore the structure of certain surjective generalized isometries (which are transformations that leave any given member of a large class of generalized distance measures invariant) of the set of positive invertible elements in a finite von Neumann factor with unit Fuglede-Kadison determinant. We conclude that any such map originates from either an algebra ∗-isomorphism or an algebra ∗-antiisomorphism of the underlying operator algebra.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 09 Mar 2020 11:26
Last Modified: 09 Mar 2020 11:26
URI: http://real.mtak.hu/id/eprint/107029

Actions (login required)

Edit Item Edit Item