Győri, Ervin and Lemons, Nathan and Salia, Nika and Zamora, O. (2019) The Structure of Hypergraphs without long Berge cycles. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 88 (3). pp. 767-771. ISSN 0862-9544
|
Text
1812.pdf Available under License Creative Commons Attribution. Download (165kB) | Preview |
Abstract
We study the structure of r-uniform hypergraphs containing no Berge cycles of length at least k for k <= r, and determine that such hypergraphs have some special substructure. In particular we determine the extremal number of such hypergraphs, giving an affirmative answer to the conjectured value when k = r and giving a. a simple solution to a recent result of Kostochka-Luo when k < r.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 08 May 2020 09:35 |
Last Modified: | 21 Apr 2023 09:11 |
URI: | http://real.mtak.hu/id/eprint/108657 |
Actions (login required)
Edit Item |