REAL

The Structure of Hypergraphs without long Berge cycles

Győri, Ervin and Lemons, Nathan and Salia, Nika and Zamora, O. (2019) The Structure of Hypergraphs without long Berge cycles. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 88 (3). pp. 767-771. ISSN 0862-9544

[img]
Preview
Text
1812.pdf
Available under License Creative Commons Attribution.

Download (165kB) | Preview

Abstract

We study the structure of r-uniform hypergraphs containing no Berge cycles of length at least k for k <= r, and determine that such hypergraphs have some special substructure. In particular we determine the extremal number of such hypergraphs, giving an affirmative answer to the conjectured value when k = r and giving a. a simple solution to a recent result of Kostochka-Luo when k < r.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 08 May 2020 09:35
Last Modified: 21 Apr 2023 09:11
URI: http://real.mtak.hu/id/eprint/108657

Actions (login required)

Edit Item Edit Item