Subecz, Zoltán and Nagyné Csák, Éva (2020) Szemantikus szerepek automatikus címkézése természetes szövegekben = Semantic Role Labeling on Natural Texts. GRADUS, 7 (1). 87-97,. ISSN 2064-8014
|
Text
2020_1_CSC_001_Subecz.pdf Download (625kB) | Preview |
Abstract
In this study we introduce a machine leaming-based approach that can automatically label semantic roles in Hungarian texts by applying a dependency parser. In our study we dealt with the areas of purchases of companies and news from stock markets. For the tasks we applied binary classifiers based on rich feature sets. In this study we introduce new methods for this application area. Having evaluated them on test databases, our algorithms achieve competitive results as compared to the current English results.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | information extraction data mining text mining machine learning event detection |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány |
Depositing User: | Zoltán Subecz |
Date Deposited: | 08 Jun 2020 14:03 |
Last Modified: | 28 Apr 2021 15:39 |
URI: | http://real.mtak.hu/id/eprint/109360 |
Actions (login required)
![]() |
Edit Item |