REAL

Improving the Simultaneous Application of the DSN-PC and NOAA GFS Datasets

Vas, Ádám and Owino, Oluoch Josphat and Tóth, László (2020) Improving the Simultaneous Application of the DSN-PC and NOAA GFS Datasets. Annales Mathematicae et Informaticae, 51. pp. 77-87. ISSN 1787-6117

[img]
Preview
Text
77_87_Vas.pdf - Published Version

Download (1MB) | Preview

Abstract

Our surface-based sensor network, called Distributed Sensor Network for Prediction Calculations (DSN-PC) obviously has limitations in terms of vertical atmospheric data. While efforts are being made to approximate these upper-air parameters from surface-level, as a first step it was necessary to test the network’s capability of making distributed computations by applying a hybrid approach. We accessed public databases like NOAA Global Forecast System (GFS) and the initial values for the 2-dimensional computational grid were produced by using both DSN-PC measurements and NOAA GFS data for each grid point. However, though the latter consists of assimilated and initialized (smoothed) data the stations of the DSN-PC network provide raw measurements which can cause numerical instability due to measurement errors or local weather phenomena. Previously we simultaneously interpolated both DSN-PC and GFS data. As a step forward, we wanted for our network to have a more significant role in the production of the initial values. Therefore it was necessary to apply 2D smoothing algorithms on the initial conditions. We found significant difference regarding numerical stability between calculating with raw and smoothed initial data. Applying the smoothing algorithms greatly improved the prediction reliability compared to the cases when raw data were used. The size of the grid portion used for smoothing has a significant impact on the goodness of the forecasts and it’s worth further investigation. We could verify the viability of direct integration of DSN-PC data since it provided forecast errors similar to the previous approach. In this paper we present one simple method for smoothing our initial data and the results of the weather prediction calculations.

Item Type: Article
Uncontrolled Keywords: sensor network, distributed computing, weather prediction, data assimilation, data smoothing
Subjects: Q Science / természettudomány > QA Mathematics / matematika
Depositing User: Tibor Gál
Date Deposited: 03 Aug 2020 15:38
Last Modified: 03 Apr 2023 06:52
URI: http://real.mtak.hu/id/eprint/111846

Actions (login required)

Edit Item Edit Item