REAL

Alternative Linker Histone Permits Fast Paced Nuclear Divisions in Early Drosophila Embryo

Henn, László and Szabó, Anikó and Imre, László and Román, Ádám and Ábrahám, Andrea and Vedelek, Balázs and Nánási, Péter and Boros, Imre M. (2020) Alternative Linker Histone Permits Fast Paced Nuclear Divisions in Early Drosophila Embryo. NUCLEIC ACIDS RESEARCH, 48 (16). pp. 9007-9018. ISSN 0305-1048 (print); 1362-4962 (online)

[img]
Preview
Text
gkaa624.pdf
Available under License Creative Commons Attribution.

Download (4MB) | Preview

Abstract

In most animals, the start of embryogenesis requires specific histones. In Drosophila linker histone variant BigH1 is present in early embryos. To uncover the specific role of this alternative linker histone at early embryogenesis, we established fly lines in which domains of BigH1 have been replaced partially or completely with that of H1. Analysis of the resulting Drosophila lines revealed that at normal temperature somatic H1 can substitute the alternative linker histone, but at low temperature the globular and C-terminal domains of BigH1 are essential for embryogenesis. In the presence of BigH1 nucleosome stability increases and core histone incorporation into nucleosomes is more rapid, while nucleosome spacing is unchanged. Chromatin formation in the presence of BigH1 permits the fast-paced nuclear divisions of the early embryo. We propose a model which explains how this specific linker histone ensures the rapid nucleosome reassembly required during quick replication cycles at the start of embryogenesis.

Item Type: Article
Subjects: Q Science / természettudomány > QH Natural history / természetrajz > QH426 Genetics / genetika, örökléstan
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 02 Dec 2020 12:16
Last Modified: 02 Dec 2020 12:16
URI: http://real.mtak.hu/id/eprint/117705

Actions (login required)

Edit Item Edit Item