Abért, Miklós and Nikolov, Nikolay (2012) Rank gradient, cost of groups and the rank versus Heegaard genus problem. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 14 (5). pp. 1657-1677. ISSN 1435-9855
|
Text
2424.pdf Available under License Creative Commons Attribution. Download (239kB) | Preview |
Official URL: http://doi.org/10.4171/JEMS/344
Abstract
We study the growth of the rank of subgroups of finite index in residually finite groups, by relating it to the notion of cost. As a by-product, we show that the 'rank vs. Heegaard genus' conjecture on hyperbolic 3-manifolds is incompatible with the 'fixed price problem' in topological dynamics. © European Mathematical Society 2012.
Item Type: | Article |
---|---|
Additional Information: | Cited By :29 Export Date: 8 February 2020 Correspondence Address: Abért, M.; Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, H-1053 Budapest, Hungary; email: abert@renyi.hu Funding details: Engineering and Physical Sciences Research Council, EPSRC, EP/H045112/1 |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 26 Feb 2021 09:55 |
Last Modified: | 25 Apr 2023 09:24 |
URI: | http://real.mtak.hu/id/eprint/121709 |
Actions (login required)
![]() |
Edit Item |