REAL

ALADIN-Climate at the Hungarian Meteorological Service: from the beginnings to the present day’s results

Bán, Beatrix and Szépszó, Gabriella and Allaga-Zsebeházi, Gabriella and Somot, Samuel (2021) ALADIN-Climate at the Hungarian Meteorological Service: from the beginnings to the present day’s results. IDŐJÁRÁS / QUARTERLY JOURNAL OF THE HUNGARIAN METEOROLOGICAL SERVICE, 125 (4). pp. 647-673. ISSN 0324-6329

[img]
Preview
Text
f925addd759864521e7151beb3e4dcda-125-4-6-ban.pdf

Download (7MB) | Preview

Abstract

This study is focusing on the past and, in particular, the present of the ALADIN-Climate model used at the Hungarian Meteorological Service. The currently applied model version is 5.2 (HMS-ALADIN52). In the recent experiments, the CNRM-CM5 global model outputs were downscaled in two steps to 10 km horizontal resolution over Central and Southeast Europe using RCP4.5 and RCP8.5 scenarios. Temperature and precipitation projections are analyzed for 2021-2050 and 2071–2100 with respect to the reference period of 1971–2000 with focus on Hungary. The results are evaluated in comparison to 26 simulations selected from the 12 km horizontal resolution Euro-CORDEX projection ensemble (including two additional versions of ALADIN-Climate: CNRM-ALADIN53 and CNRM-ALADIN63) to get more information about the projection uncertainties over Hungary and to assess the representativeness of HMS-ALADIN52. The HMS-ALADIN52 simulations project a clear warming trend in Central and Southeast Europe, which is more remarkable in case of greater radiative forcing change (RCP8.5). From the 2040s, the Euro-CORDEX simulations start to diverge using different scenarios. The total range of the annual change over Hungary is 1.3–3.3 °C with RCP4.5 and 3.2–5.7 °C with RCP8.5 by the end of the 21st century. HMS-ALADIN52 results are approximately near to the median: 2.9 °C with RCP4.5 and 4 °C with RCP8.5. CNRM-ALADIN53 shows generally similar results to HMS-ALADIN52, but simulations with CNRM-ALADIN63 indicate higher changes compared to both. In terms of seasonal mean precipitation change, the HMS-ALADIN52 simulations assume an increase between 9% and 33% (less in spring, more in autumn) over Hungary in both periods and with both scenarios. Most of the selected Euro-CORDEX simulations show a precipitation increase, apart from summer, when growth and reduction can be equally expected in 2021–2050, and the drying tendency continues towards the end of the century. Increase projected by HMS-ALADIN52 is mostly confirmed by CNRM-ALADIN53, while CNRM-ALADIN63 predicts precipitation decrease in summer. Precipitation results do not show a significantly striking difference between the scenarios, likely due to the fact that internal variability and model uncertainty are more relevant sources of uncertainty in precipitation projections over our region.

Item Type: Article
Subjects: Q Science / természettudomány > QE Geology / földtudományok > QE04 Meteorology / meteorológia
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 22 Jul 2022 08:45
Last Modified: 22 Jul 2022 08:45
URI: http://real.mtak.hu/id/eprint/145074

Actions (login required)

Edit Item Edit Item