REAL

Chess, Artificial Intelligence, and Epistemic Opacity

Grünke, Paul (2019) Chess, Artificial Intelligence, and Epistemic Opacity. INFORMÁCIÓS TÁRSADALOM: TÁRSADALOMTUDOMÁNYI FOLYÓIRAT, 19 (4). pp. 7-28. ISSN 1587-8694

[img]
Preview
Text
inftars.XIX.2019.4.1.pdf
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB) | Preview

Abstract

In 2017 AlphaZero, a neural network-based chess engine shook the chess world by convincingly beating Stockfish, the highest-rated chess engine. In this paper, I describe the technical differences between the two chess engines and based on that, I discuss the impact of the modeling choices on the respective epistemic opacities. I argue that the success of AlphaZero’s approach with neural networks and reinforcement learning is counterbalanced by an increase in the epistemic opacity of the resulting model.

Item Type: Article
Subjects: H Social Sciences / társadalomtudományok > H Social Sciences (General) / társadalomtudomány általában
SWORD Depositor: MTMT SWORD
Depositing User: Zsolt Baráth
Date Deposited: 13 Sep 2022 11:28
Last Modified: 13 Sep 2022 11:28
URI: http://real.mtak.hu/id/eprint/148527

Actions (login required)

Edit Item Edit Item