Al-Khafaji, Mohammed and Gaál, Anikó and Jezsó, Bálint and Mihály, Judith and Bartczak, Dorota and Goenaga-Infante, Heidi and Varga, Zoltán (2022) Synthesis of Porous Hollow Organosilica Particles with Tunable Shell Thickness. NANOMATERIALS, 12 (7). pp. 1-13. ISSN 2079-4991
|
Text
nanomaterials-12-01172.pdf Available under License Creative Commons Attribution. Download (3MB) | Preview |
Abstract
Porous hollow silica particles possess promising applications in many fields, ranging from drug delivery to catalysis. From the synthesis perspective, the most challenging parameters are the monodispersity of the size distribution and the thickness and porosity of the shell of the particles. This paper demonstrates a facile two-pot approach to prepare monodisperse porous-hollow silica particles with uniform spherical shape and well-tuned shell thickness. In this method, a series of porous-hollow inorganic and organic-inorganic core-shell silica particles were synthesized via hydrolysis and condensation of 1,2-bis(triethoxysilyl) ethane (BTEE) and tetraethyl orthosilicate (TEOS) in the presence of hexadecyltrimethylammonium bromide (CTAB) as a structure-directing agent on solid silica spheres as core templates. Finally, the core templates were removed via hydrothermal treatment under alkaline conditions. Transmission electron microscopy (TEM) was used to characterize the particles′ morphology and size distribution, while the changes in the chemical composition during synthesis were followed by Fourier-transform infrared spectroscopy. Single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied to assess the monodispersity of the hollow particles prepared with different reaction parameters. We found that the presence of BTEE is key to obtaining a well-defined shell structure, and the increase in the concentration of the precursor and the surfactant increases the thickness of the shell. TEM and spICP-MS measurements revealed that fused particles are also formed under suboptimal reaction parameters, causing the broadening of the size distribution, which can be preceded by using appropriate concentrations of BTEE, CTAB, and ammonia.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QD Chemistry / kémia > QD04 Organic chemistry / szerves kémia |
Depositing User: | Dr Zoltán Varga |
Date Deposited: | 29 Sep 2022 09:58 |
Last Modified: | 29 Sep 2022 09:58 |
URI: | http://real.mtak.hu/id/eprint/150661 |
Actions (login required)
![]() |
Edit Item |