Kristály, Alexandru (2015) A Sharp Sobolev Interpolation Inequality on Finsler Manifolds. Journal of Geometric Analysis, 25 (4). pp. 2226-2240. ISSN 1050-6926
| ![[img]](http://real.mtak.hu/style/images/fileicons/text.png) | Text Kristaly_JGA.pdf Restricted to Registered users only Download (238kB) | Request a copy | 
Abstract
In this paper we study a sharp Sobolev interpolation inequality on Finsler manifolds. We show that Minkowski spaces represent the optimal framework for the Sobolev interpolation inequality on a large class of Finsler manifolds: (1) Minkowski spaces support the sharp Sobolev interpolation inequality; (2) any complete Berwald space with non-negative Ricci curvature which supports the sharp Sobolev interpolation inequality is isometric to a Minkowski space. The proofs are based on properties of the Finsler–Laplace operator and on the Finslerian Bishop–Gromov volume comparison theorem.
| Item Type: | Article | 
|---|---|
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria Q Science / természettudomány > QA Mathematics / matematika > QA74 Analysis / analízis | 
| Depositing User: | Dr. Alexandru Kristaly | 
| Date Deposited: | 17 Sep 2014 11:54 | 
| Last Modified: | 28 May 2016 17:58 | 
| URI: | http://real.mtak.hu/id/eprint/15231 | 
Actions (login required)
|  | Edit Item | 



