REAL

Coloring linear hypergraphs: the Erdos-Faber-Lovasz conjecture and the Combinatorial Nullstellensatz

Janzer, Oliver and Nagy, Zoltán Lóránt (2022) Coloring linear hypergraphs: the Erdos-Faber-Lovasz conjecture and the Combinatorial Nullstellensatz. DESIGNS CODES AND CRYPTOGRAPHY, 90. pp. 1991-2001. ISSN 0925-1022

[img]
Preview
Text
2007.00685.pdf

Download (962kB) | Preview

Abstract

The long-standing Erdos-Faber-Lovasz conjecture states that every n-uniform linear hypergaph with n edges has a proper vertex-coloring using n colors. In this paper we propose an algebraic framework to the problem and formulate a corresponding stronger conjecture. Using the Combinatorial Nullstellensatz, we reduce the Erdos-Faber-Lovasz conjecture to the existence of non-zero coefficients in certain polynomials. These coefficients are in turn related to the number of orientations with prescribed in-degree sequences of some auxiliary graphs. We prove the existence of certain orientations, which verifies a necessary condition for our algebraic approach to work.

Item Type: Article
Uncontrolled Keywords: coloring; hypergraphs; Combinatorial Nullstellensatz; SZ; Graph orientations; S‐; Erdő; Faber–; Lová;
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 03 Nov 2022 10:30
Last Modified: 03 Nov 2022 10:30
URI: http://real.mtak.hu/id/eprint/152845

Actions (login required)

Edit Item Edit Item