Janzer, Oliver and Nagy, Zoltán Lóránt (2022) Coloring linear hypergraphs: the Erdos-Faber-Lovasz conjecture and the Combinatorial Nullstellensatz. DESIGNS CODES AND CRYPTOGRAPHY, 90. pp. 1991-2001. ISSN 0925-1022
|
Text
2007.00685.pdf Download (962kB) | Preview |
Abstract
The long-standing Erdos-Faber-Lovasz conjecture states that every n-uniform linear hypergaph with n edges has a proper vertex-coloring using n colors. In this paper we propose an algebraic framework to the problem and formulate a corresponding stronger conjecture. Using the Combinatorial Nullstellensatz, we reduce the Erdos-Faber-Lovasz conjecture to the existence of non-zero coefficients in certain polynomials. These coefficients are in turn related to the number of orientations with prescribed in-degree sequences of some auxiliary graphs. We prove the existence of certain orientations, which verifies a necessary condition for our algebraic approach to work.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | coloring; hypergraphs; Combinatorial Nullstellensatz; SZ; Graph orientations; S‐; Erdő; Faber–; Lová; |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 03 Nov 2022 10:30 |
Last Modified: | 03 Nov 2022 10:30 |
URI: | http://real.mtak.hu/id/eprint/152845 |
Actions (login required)
![]() |
Edit Item |