Szekrényes, Dániel Péter and Hamon, Cyrille and Constantin, Doru and Deák, András (2022) Formation of kinetically trapped small clusters of PEGylated gold nanoparticles revealed by the combination of small-angle X-ray scattering and visible light spectroscopy. SOFT MATTER, 18 (43). pp. 8295-8301. ISSN 1744-683X
|
Text
d2sm01257j.pdf Available under License Creative Commons Attribution Non-commercial. Download (1MB) | Preview |
Abstract
Gold nanoparticles coated with polyethylene glycol (PEG) are able to form clusters due to the collapse of the surface-grafted polymer chains when the temperature and ion concentration of the aqueous medium are increased. The chain collapse reduces the steric repulsion, leading to particle aggregation. In this work, we combine small angle X-ray scattering (SAXS) and visible light spectroscopy to elucidate the structure of the developing clusters. The structure derived from the SAXS measurements reveals a decrease in interparticle distance and drastic narrowing of its distribution in the cluster, indicating restricted particle mobility and displacement within the cluster. Surprisingly, instead of forming a large crystalline phase, the evolving clusters are composed of about a dozen particles. The experimental optical extinction spectra measured during cluster formation can be very well reproduced by optical simulations based on the SAXS-derived structural data.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QD Chemistry / kémia |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 09 Jan 2023 08:37 |
Last Modified: | 09 Jan 2023 08:37 |
URI: | http://real.mtak.hu/id/eprint/156203 |
Actions (login required)
![]() |
Edit Item |