REAL

MATCHINGS IN REGULAR GRAPHS: MINIMIZING THE PARTITION FUNCTION

Borbenyi, Marton and Csíkvári, Péter (2021) MATCHINGS IN REGULAR GRAPHS: MINIMIZING THE PARTITION FUNCTION. TRANSACTIONS ON COMBINATORICS, 10 (2). pp. 1-23. ISSN 2251-8657

[img]
Preview
Text
2006.16815.pdf

Download (588kB) | Preview

Abstract

For a graph G on v(G) vertices let m(k)(G) denote the number of matchings of size k, and consider the partition function M-G(lambda) = Sigma(n)(k=0)m(k)(G)lambda(k). In this paper we show that if G is a d-regular graph and 0 < lambda < (4d)(-2), then1/v(G) ln M-G(lambda) > 1/v(Kd+1) ln MKd+1(lambda).The same inequality holds true if d = 3 and lambda < 0.3575. More precise conjectures are also given.

Item Type: Article
Additional Information: Export Date: 4 January 2022 Correspondence Address: Borbenyi, M.; Eotvos Lorand UniversityHungary; email: marton.borbenyi@gmail.com Correspondence Address: Csikvari, P.; Alfred Renyi Institute of MathematicsHungary; email: peter.csikvari@gmail.com
Uncontrolled Keywords: Matchings; Regular graphs; Matching polynomial;
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 16 Jan 2023 14:39
Last Modified: 16 Jan 2023 14:39
URI: http://real.mtak.hu/id/eprint/156616

Actions (login required)

Edit Item Edit Item