REAL

Nucleosynthetic Yields from Neutron Stars Accreting in Binary Common Envelopes

Keegans, J. and Fryer, C. L. and Jones, S. W. and Coté, Benoit and Belczynski, K. and Pignatari, Marco (2019) Nucleosynthetic Yields from Neutron Stars Accreting in Binary Common Envelopes. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 485 (1). pp. 620-639. ISSN 0035-8711

[img]
Preview
Text
1902.01661.pdf

Download (2MB) | Preview

Abstract

Massive-star binaries can undergo a phase where one of the two stars expands during its advanced evolutionary stage as a giant and envelops its companion, ejecting the hydrogen envelope and tightening its orbit. Such a common envelope phase is required to tighten the binary orbit in the formation of many of the observed X-ray binaries and merging compact binary systems. In the formation scenario for neutron star binaries, the system might pass through a phase where a neutron star spirals into the envelope of its giant star companion. These phases lead to mass accretion onto the neutron star. Accretion onto these common-envelope-phase neutron stars can eject matter that has undergone burning near to the neutron star surface. This paper presents nucleosynthetic yields of this ejected matter, using population synthesis models to study the importance of these nucleosynthetic yields in a galactic chemical evolution context. Depending on the extreme conditions in temperature and density found in the accreted material, both proton-rich and neutron-rich nucleosynthesis can be obtained, with efficient production of neutron rich isotopes of low Z material at the most extreme conditions, and proton rich isotopes, again at low Z, in lower density models. Final yields are found to be extremely sensitive to the physical modeling of the accretion phase. We show that neutron stars accreting in binary common envelopes might be a new relevant site for galactic chemical evolution, and therefore more comprehensive studies are needed to better constrain nucleosynthesis in these objects.

Item Type: Article
Uncontrolled Keywords: GAMMA-RAY BURST; ABUNDANCES; nucleosynthesis; Neutron stars;
Subjects: Q Science / természettudomány > QB Astronomy, Astrophysics / csillagászat, asztrofizika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 13 Feb 2023 15:07
Last Modified: 13 Feb 2023 15:07
URI: http://real.mtak.hu/id/eprint/158967

Actions (login required)

Edit Item Edit Item