REAL

Geometry of Permutation Limits

Rahman, Mustazee and Virág, Bálint and Vizer, Máté (2019) Geometry of Permutation Limits. COMBINATORICA, 39 (4). pp. 933-960. ISSN 0209-9683

[img]
Preview
Text
1609.03891.pdf

Download (1MB) | Preview

Abstract

This paper initiates a limit theory of permutation valued processes, building on the recent theory of permutons. We apply this to study the asymptotic behaviour of random sorting networks. We prove that the Archimedean path, the conjectured limit of random sorting networks, is the unique path from the identity to the reverse permuton having minimal energy in an appropriate metric. Together with a recent large deviations result (Kotowski, 2016), it implies the Archimedean limit for the model of relaxed random sorting networks.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 23 Feb 2023 07:57
Last Modified: 23 Feb 2023 07:57
URI: http://real.mtak.hu/id/eprint/159965

Actions (login required)

Edit Item Edit Item