Rahman, Mustazee and Virág, Bálint and Vizer, Máté (2019) Geometry of Permutation Limits. COMBINATORICA, 39 (4). pp. 933-960. ISSN 0209-9683
|
Text
1609.03891.pdf Download (1MB) | Preview |
Official URL: https://doi.org/10.1007/s00493-019-3817-6
Abstract
This paper initiates a limit theory of permutation valued processes, building on the recent theory of permutons. We apply this to study the asymptotic behaviour of random sorting networks. We prove that the Archimedean path, the conjectured limit of random sorting networks, is the unique path from the identity to the reverse permuton having minimal energy in an appropriate metric. Together with a recent large deviations result (Kotowski, 2016), it implies the Archimedean limit for the model of relaxed random sorting networks.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 23 Feb 2023 07:57 |
Last Modified: | 23 Feb 2023 07:57 |
URI: | http://real.mtak.hu/id/eprint/159965 |
Actions (login required)
![]() |
Edit Item |