Szántó, Csaba (2014) On some Ringel-Hall numbers in tame cases. Acta Universitatis Sapientiae Mathematica, 6 (1). pp. 61-72. ISSN 1844-6094
Text
OnRHNumbersActa.pdf Restricted to Registered users only Download (115kB) | Request a copy |
Abstract
Let $k$ be a finite field and consider the finite dimensional path algebra $kQ$ where $Q$ is a quiver of tame type i.e. of type $\tilde A_n,\tilde D_n,\tilde E_6, \tilde E_7,\tilde E_8$. Let $\mathcal{H}(kQ)$ be the corresponding Ringel-Hall algebra. We are going to determine the Ringel-Hall numbers of the form $F^{P'}_{XP}$ with $P,P'$ preprojective indecomposables of defect -1 and $F^{I'}_{IX}$ with $I,I'$ preinjective indecompo\-sables of defect 1. It turns out that these numbers are either 1 or 0.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA72 Algebra / algebra |
Depositing User: | Csaba Szántó |
Date Deposited: | 24 Sep 2014 04:41 |
Last Modified: | 24 Sep 2014 04:42 |
URI: | http://real.mtak.hu/id/eprint/16299 |
Actions (login required)
Edit Item |