REAL

Merger of Multiple Accreting Black Holes Concordant with Gravitational-wave Events

Tagawa, Hiromichi and Umemura, M. (2018) Merger of Multiple Accreting Black Holes Concordant with Gravitational-wave Events. ASTROPHYSICAL JOURNAL, 856 (1). ISSN 1538-4357

[img]
Preview
Text
1802.07473.pdf

Download (996kB) | Preview

Abstract

Recently, the advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has detected black hole (BH) merger events, most of which are sourced by BHs more massive than 30 M-circle dot. Especially, the observation of GW170104 suggests dynamically assembled binaries favoring a distribution of misaligned spins. It has been argued that mergers of unassociated BHs can be engendered through a chance meeting in a multiple BH system under gas-rich environments. In this paper, we consider the merger of unassociated BHs, concordant with the massive BH merger events. To that end, we simulate a multiple BH system with a post-Newtonian N-body code incorporating gas accretion and general relativistic effects. As a result, we find that gas dynamical friction effectively promotes a three-body interaction of BHs in dense gas of n(gas) greater than or similar to 10(6) cm(-3), so that BH mergers can take place within 30 Myr. This scenario predicts an isotropic distribution of spin tilts. In the concordant models with GW150914, the masses of seed BHs are required to be greater than or similar to 25 M-circle dot. The potential sites of such chance meeting BH mergers are active galactic nucleus (AGN) disks and dense interstellar clouds. Assuming the LIGO O1, we roughly estimate the event rates for PopI BHs and PopIII BHs in AGN disks to be similar or equal to 1-2 yr(-1) and similar or equal to 1 yr(-1), respectively. Multiple episodes of AGNs may enhance the rates by roughly an order of magnitude. For massive PopI BHs in dense interstellar clouds the rate is similar or equal to 0.02 yr(-1). Hence, high-density AGN disks are a more plausible site for mergers of chance meeting BHs.

Item Type: Article
Uncontrolled Keywords: FEEDBACK; EVOLUTION; MORPHOLOGY; RATES; LUMINOSITY; methods: numerical;
Subjects: Q Science / természettudomány > QC Physics / fizika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 29 Mar 2023 13:37
Last Modified: 29 Mar 2023 13:37
URI: http://real.mtak.hu/id/eprint/163068

Actions (login required)

Edit Item Edit Item