REAL

Construction and investigation of new numerical algorithms for the heat equation : Part I.

Saleh, Mahmoud and Nagy, Ádám and Kovács, Endre (2020) Construction and investigation of new numerical algorithms for the heat equation : Part I. MULTIDISZCIPLINÁRIS TUDOMÁNYOK: A MISKOLCI EGYETEM KÖZLEMÉNYE, 10 (4). pp. 323-338. ISSN 2062-9737 (nyomtatott), 2786-1465 (online)

[img]
Preview
Text
639_doi.pdf - Published Version

Download (493kB) | Preview

Abstract

In this paper-series, we use two known, but non-conventional algorithms, the UPFD and the odd-even hopscotch method, to construct new schemes for the numerical solution of the heat equation. In this part of the series, we examine the algorithms analytically. We exactly prove that all the methods are first order time integrators, three of them preserve positivity of the solutions and we deduce important information about the convergence and accuracy of the methods. Numerical case studies will be presented in the next two part of the series.

Item Type: Article
Uncontrolled Keywords: explicit numerical methods, heat equation, parabolic PDEs, hopscotch method, UPDF
Subjects: Q Science / természettudomány > QA Mathematics / matematika
Q Science / természettudomány > QC Physics / fizika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 02 May 2023 07:34
Last Modified: 02 May 2023 07:34
URI: http://real.mtak.hu/id/eprint/164649

Actions (login required)

Edit Item Edit Item