REAL

An SDN controller-based framework for anomaly detection using a GAN ensemble algorithm

Ezeh, Dubem A. and de Oliveira, Jaudelice (2023) An SDN controller-based framework for anomaly detection using a GAN ensemble algorithm. INFOCOMMUNICATIONS JOURNAL : A PUBLICATION OF THE SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS (HTE), 15 (2). pp. 29-36. ISSN 2061-2079

[img]
Preview
Text
InfocomJournal_2023_2_5.pdf

Download (899kB) | Preview

Abstract

Of recent, a handful of machine learning techniques have been proposed to handle the task of intrusion detection with algorithms taking charge; these algorithms learn, from traffic flow examples, to distinguish between benign and anomalous network events. In this paper, we explore the use of a Generative Adversarial Network (GAN) ensemble to detect anomalies in a Software-Defined Networking (SDN) environment using the Global Environment for Network Innovations (GENI) testbed over geographically separated instances. A controllerbased framework is proposed, comprising several components across the detection chain. A bespoke dataset is generated, addressing three of the most popular contemporary network attacks and using an SDN perspective. Evaluation results show great potential for detecting a wide array of anomalies.

Item Type: Article
Uncontrolled Keywords: Software-Defined Networking, network anomaly detection, GAN ensemble, machine learning, DDoS.
Subjects: Q Science / természettudomány > QA Mathematics / matematika > QA76.16-QA76.165 Communication networks, media, information society / kommunikációs hálózatok, média, információs társadalom
Depositing User: Andrea Tankó
Date Deposited: 21 Jul 2023 07:22
Last Modified: 21 Jul 2023 07:22
URI: http://real.mtak.hu/id/eprint/170280

Actions (login required)

Edit Item Edit Item