Csikós, Balázs and Horváth, Márton (2016) Harmonic manifolds and the volume of tubes about curves. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 94. pp. 141-160. ISSN 0024-6107
|
Text
1506.02468.pdf Available under License Creative Commons Attribution. Download (266kB) | Preview |
Abstract
H. Hotelling proved that, in the n-dimensional Euclidean or spherical space, the volume of a tube of small radius about a curve depends only on the length of the curve and the radius. A. Gray and L. Vanhecke extended Hotelling's theorem to rank 1 symmetric spaces, computing the volumes of the tubes explicitly in these spaces. In the present paper, we generalize these results by showing that every harmonic manifold has the above tube property. We compute the volume of tubes in the Damek-Ricci spaces. We show that if a Riemannian manifold has the tube property, then it is a 2-stein D'Atri space. We also prove that a symmetric space has the tube property if and only if it is harmonic. Our results answer some questions posed by L. Vanhecke, T. J. Willmore, and G. Thorbergsson.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 02 Aug 2023 14:17 |
Last Modified: | 03 Aug 2023 05:57 |
URI: | http://real.mtak.hu/id/eprint/170905 |
Actions (login required)
![]() |
Edit Item |