Rosebrock, Marina and Schlenkrich, Jakob and Christmann, Hannah and Graf, Rebecca and Bessel, Patrick and Zámbó, Dániel (2023) Interpenetrating Self‐Supporting Networks from Anisotropic Semiconductor Nanoparticles and Noble Metal Nanowires. SMALL STRUCTURES. No.-2300225. ISSN 2688-4062 (In Press)
|
Text
SmallStructures-2023-Rosebrock.pdf Available under License Creative Commons Attribution. Download (1MB) | Preview |
Abstract
In this work, a new type of multicomponent nanostructures is introduced by forming interpenetrating networks of two different nanomaterials. In detail, gel networks from semiconductor nanorods are interpenetrated by Au nanowires. Two different types of gelling agents, namely S2− and Yb3+, are employed to trigger the network formation. The structural and electrochemical properties of the resulting materials are discussed. (Photo)electrochemical measurements are performed on the structures to compare the materials in terms of their conductivity as well as their efficiency in converting photonic energy to electrical energy. The new type of CdSe/CdS:Au nanostructure gelled with S2− shows one order of magnitude higher photocurrent than the system gelled with Yb3+. Moreover, the introduction of Au nanowires exhibit a photocurrent which is two orders of magnitudes higher than in samples without Au nanowires.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | interpenetration, ionic gelation, mixing, multicomponent, nanoparticles, noble metals, semiconductors |
Subjects: | Q Science / természettudomány > QD Chemistry / kémia > QD02 Physical chemistry / fizikai kémia |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 28 Aug 2023 07:30 |
Last Modified: | 28 Aug 2023 07:30 |
URI: | http://real.mtak.hu/id/eprint/172105 |
Actions (login required)
![]() |
Edit Item |