REAL

Poly(dithiophosphate)s, a New Class of Phosphorus- and Sulfur-Containing Functional Polymers by a Catalyst-Free Facile Reaction Between Diols and Phosphorus Pentasulfide

Szabó, Ákos and Szarka, Györgyi and Trif, László and Gyarmati, Benjámin and Bereczki, Laura and Iván, Béla and Kovács, Ervin (2022) Poly(dithiophosphate)s, a New Class of Phosphorus- and Sulfur-Containing Functional Polymers by a Catalyst-Free Facile Reaction Between Diols and Phosphorus Pentasulfide. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 23 (24). No.-15963. ISSN 1661-6596 (print); 1422-0067 (online)

[img]
Preview
Text
poly(dithio).pdf
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Novel poly(dithiophosphate)s (PDTPs) were successfully synthesized under mild conditions without any additive in the presence of THF or toluene diluents at 60 ◦C by a direct, catalyst-free reaction between the abundant phosphorus pentasulfide (P4S10) and glycols such as ethylene glycol (EG), 1,6-hexanediol (HD) and poly(ethylene glycol) (PEG). GPC, FTIR, 1H and 31P NMR analyses proved the formation of macromolecules with dithiophosphate coupling groups having P=S and P-SH pendant functionalities. Surprisingly, the ring-opening of THF by the P-SH group and its pendant incorporation as a branching point occur during polymerization. This process is absent with toluene, providing conditions to obtain linear chains. 31P NMR measurements indicate long-time partial hydrolysis and esterification, resulting in the formation of a thiophosphoric acid moiety and branching points. Copolymerization, i.e., using mixtures of EG or HD with PEG, results in polymers with broadly varying viscoelastic properties. TGA shows the lower thermal stability of PDTPs than that of PEG due to the relatively low thermal stability of the P-O-C moieties. The low Tgs of these polymers, from −4 to −50 ◦C, and a lack of PEG crystallites were found by DSC. This polymerization process and the resulting novel PDTPs enable various new routes for polymer synthesis and application possibilities.

Item Type: Article
Subjects: Q Science / természettudomány > QD Chemistry / kémia
Depositing User: Dr. Benjámin Gyarmati
Date Deposited: 27 Sep 2023 08:11
Last Modified: 27 Sep 2023 08:11
URI: http://real.mtak.hu/id/eprint/175182

Actions (login required)

Edit Item Edit Item