Jung, Attila and Naszódi, Márton (2022) Quantitative Fractional Helly and (p,q)-Theorems. EUROPEAN JOURNAL OF COMBINATORICS, 99. Paper No.-103424. ISSN 0195-6698
|
Text
1-s2.0-S0195669821001177-main.pdf - Published Version Available under License Creative Commons Attribution. Download (514kB) | Preview |
Official URL: https://doi.org/10.1016/j.ejc.2021.103424
Abstract
We consider quantitative versions of Helly-type questions, that is, instead of finding a point in the intersection, we bound the volume of the intersection. Our first main geometric result is a quantitative version of the Fractional Helly Theorem of Katchalski and Liu, the second one is a quantitative version of the (p,q)-Theorem of Alon and Kleitman.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria |
Depositing User: | Dr. Márton Naszódi |
Date Deposited: | 27 Sep 2023 13:44 |
Last Modified: | 27 Sep 2023 13:44 |
URI: | http://real.mtak.hu/id/eprint/175293 |
Actions (login required)
![]() |
Edit Item |