REAL

Alternating sums in hyperbolic Pascal triangles

Németh, László and Szalay, László (2016) Alternating sums in hyperbolic Pascal triangles. MISKOLC MATHEMATICAL NOTES, 17 (2). pp. 989-998. ISSN 1787-2405

[img]
Preview
Text
1702.01640.pdf
Available under License Creative Commons Attribution.

Download (645kB) | Preview

Abstract

A new generalization of Pascal’s triangle, the so-called hyperbolic Pascal triangles were introduced in [1]. The mathematical background goes back to the regular mosaics in the hyperbolic plane. The alternating sum of elements in the rows was given in the special case {4, 5} of the hyperbolic Pascal triangles. In this article, we determine the alternating sum generally in the hyperbolic Pascal triangle corresponding to {4, q} with q ≥ 5.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 02 Oct 2023 13:41
Last Modified: 02 Oct 2023 13:41
URI: http://real.mtak.hu/id/eprint/175831

Actions (login required)

Edit Item Edit Item