Németh, László and Szalay, László (2016) Alternating sums in hyperbolic Pascal triangles. MISKOLC MATHEMATICAL NOTES, 17 (2). pp. 989-998. ISSN 1787-2405
|
Text
1702.01640.pdf Available under License Creative Commons Attribution. Download (645kB) | Preview |
Official URL: https://doi.org/10.18514/MMN.2016.
Abstract
A new generalization of Pascal’s triangle, the so-called hyperbolic Pascal triangles were introduced in [1]. The mathematical background goes back to the regular mosaics in the hyperbolic plane. The alternating sum of elements in the rows was given in the special case {4, 5} of the hyperbolic Pascal triangles. In this article, we determine the alternating sum generally in the hyperbolic Pascal triangle corresponding to {4, q} with q ≥ 5.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 02 Oct 2023 13:41 |
Last Modified: | 02 Oct 2023 13:41 |
URI: | http://real.mtak.hu/id/eprint/175831 |
Actions (login required)
Edit Item |