Korchmáros, G. and Nagy, Gábor Péter and Pace, N. (2015) k-nets embedded in a projective plane over a field. COMBINATORICA, 35 (1). pp. 63-74. ISSN 0209-9683
|
Text
1306.5779.pdf Download (156kB) | Preview |
Abstract
We investigate k-nets with k ≥ 4 embedded in the projective plane P G(2, K) defined over a field K; they are line configurations in P G(2, K) consisting of k pairwise disjoint line-sets, called compo- nents, such that any two lines from distinct families are concurrent with exactly one line from each component. The size of each com- ponent of a k-net is the same, the order of the k-net. If K has zero characteristic, no embedded k-net for k ≥ 5 exists; see [10, 13]. Here we prove that this holds true in positive characteristic p as long as p is sufficiently large compared with the order of the k-net. Our ap- proach, different from that used in [10, 13], also provides a new proof in characteristic zero.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 09 Oct 2023 15:10 |
Last Modified: | 09 Oct 2023 15:10 |
URI: | http://real.mtak.hu/id/eprint/176357 |
Actions (login required)
![]() |
Edit Item |