Hintermann, E. and Bayer, M. and Pfeilschifter, J. M. and Deák, Ferenc and Kiss, Ibolya (2014) Upregulation of matrilin-2 expression in murine hepatic stellate cells during liver injury has no effect on fibrosis formation and resolution. LIVER INTERNATIONAL, &. pp. 1-9. ISSN 1478-3223
Text
HintermannLiverInternational.pdf Restricted to Repository staff only Download (1MB) | Request a copy |
Abstract
BACKGROUND & AIMS: Matrilins are a family of four oligomeric adaptor proteins whose functions in extracellular matrix assembly during pathophysiological events still need to be explored in more detail. Matrilin-2 is the largest family member and the only matrilin expressed in the naive liver. Several studies demonstrate that matrilin-2 interacts with collagen I, fibronectin or laminin-111-nidogen-1 complexes. All these matrix components get upregulated during hepatic scar tissue formation. Therefore, we tested whether matrilin-2 has an influence on the formation and/or the resolution of fibrotic tissue in the mouse liver. METHODS: Fibrosis was induced by infection with an adenovirus encoding cytochrome P450 2D6 (autoimmune liver damage) or by exposure to the hepatotoxin carbon tetrachloride. Fibrosis severity and matrilin-2 expression were assessed by immunohistochemistry. Hepatic stellate cells (HSCs) were isolated and analysed by immunocytochemistry and Transwell migration assays. RESULTS: Both autoimmune as well as chemically induced liver damage led to simultaneous upregulation of matrilin-2 and collagen I expression. Discontinuation of carbon tetrachloride exposure resulted in concomitant dissolution of both proteins. Activated HSCs were the source of de novo matrilin-2 expression. Comparing wild type and matrilin-2-deficient mice, no differences were detected in fibronectin and collagen I upregulation and resolution kinetics as well as amount or location of fibronectin and collagen I production and degradation. CONCLUSIONS: Our findings suggest that the absence of matrilin-2 has no effect on HSC activation and regression kinetics, synthetic activity, proliferative capacity, motility, or HSC apoptosis.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > Q1 Science (General) / természettudomány általában Q Science / természettudomány > QR Microbiology / mikrobiológia |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 18 Oct 2014 07:33 |
Last Modified: | 18 Oct 2014 07:33 |
URI: | http://real.mtak.hu/id/eprint/17744 |
Actions (login required)
Edit Item |