REAL

Iterative Scaling in Curved Exponential Families

Klimova, A. and Rudas, Tamás (2015) Iterative Scaling in Curved Exponential Families. SCANDINAVIAN JOURNAL OF STATISTICS, 42 (3). pp. 832-847. ISSN 0303-6898

[img]
Preview
Text
1307.3282.pdf
Available under License Creative Commons Attribution.

Download (468kB) | Preview

Abstract

The paper describes a generalized iterative proportional fitting procedure which can be used for maximum likelihood estimation in a special class of the general log-linear model. The models in this class, called relational, apply to multivariate discrete sample spaces which do not necessarily have a Cartesian product structure and may not contain an overall effect. When applied to the cell probabilities, the models without the overall effect are curved exponential families and the values of the sufficient statistics are reproduced by the MLE only up to a constant of proportionality. The paper shows that Iterative Proportional Fitting, Generalized Iterative Scaling and Improved Iterative Scaling, fail to work for such models. The algorithm proposed here is based on iterated Bregman projections. As a by-product, estimates of the multiplicative parameters are also obtained.

Item Type: Article
Subjects: Q Science / természettudomány > Q1 Science (General) / természettudomány általában
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 15 Nov 2023 14:14
Last Modified: 15 Nov 2023 14:14
URI: http://real.mtak.hu/id/eprint/180098

Actions (login required)

Edit Item Edit Item