Barát, János (2023) Extremal K-4-minor-free graphs without short cycles. PERIODICA MATHEMATICA HUNGARICA, 86. pp. 108-114. ISSN 0031-5303
|
Text
s10998-022-00465-7.pdf Available under License Creative Commons Attribution. Download (232kB) | Preview |
Official URL: https://doi.org/10.1007/s10998-022-00465-7
Abstract
We determine the maximum number of edges in a K-4-minor-free n-vertex graph of girth g, when g = 5 or g is even. We argue that there are many different n-vertex extremal graphs if n is even and g is odd.
Item Type: | Article |
---|---|
Additional Information: | Alfréd Rényi Institute of Mathematics, Eötvös Loránd Research Network, Budapest, Hungary Department of Mathematics, University of Pannonia, Veszprém, Hungary Export Date: 26 October 2022 Correspondence Address: Barát, J.; Alfréd Rényi Institute of Mathematics, Hungary; email: barat@mik.uni-pannon.hu Funding details: NKFIH-1158-6/2019 Funding details: European Research Council, ERC Funding details: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal, NKFIH, NKFIH,K-131529 Funding text 1: Supported by ERC Advanced Grant “GeoScape”, National Research, Development and Innovation Office, NKFIH,K-131529 and a grant of the Hungarian Ministry for Innovation and Technology (Grant No: NKFIH-1158-6/2019). |
Uncontrolled Keywords: | Graph decomposition; Extremal graph; Girth; K-4-minor-free; Euler's formula; |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 22 Nov 2023 15:16 |
Last Modified: | 22 Nov 2023 15:16 |
URI: | http://real.mtak.hu/id/eprint/180672 |
Actions (login required)
![]() |
Edit Item |