REAL

Extremal K-4-minor-free graphs without short cycles

Barát, János (2023) Extremal K-4-minor-free graphs without short cycles. PERIODICA MATHEMATICA HUNGARICA, 86. pp. 108-114. ISSN 0031-5303

[img]
Preview
Text
s10998-022-00465-7.pdf
Available under License Creative Commons Attribution.

Download (232kB) | Preview

Abstract

We determine the maximum number of edges in a K-4-minor-free n-vertex graph of girth g, when g = 5 or g is even. We argue that there are many different n-vertex extremal graphs if n is even and g is odd.

Item Type: Article
Additional Information: Alfréd Rényi Institute of Mathematics, Eötvös Loránd Research Network, Budapest, Hungary Department of Mathematics, University of Pannonia, Veszprém, Hungary Export Date: 26 October 2022 Correspondence Address: Barát, J.; Alfréd Rényi Institute of Mathematics, Hungary; email: barat@mik.uni-pannon.hu Funding details: NKFIH-1158-6/2019 Funding details: European Research Council, ERC Funding details: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal, NKFIH, NKFIH,K-131529 Funding text 1: Supported by ERC Advanced Grant “GeoScape”, National Research, Development and Innovation Office, NKFIH,K-131529 and a grant of the Hungarian Ministry for Innovation and Technology (Grant No: NKFIH-1158-6/2019).
Uncontrolled Keywords: Graph decomposition; Extremal graph; Girth; K-4-minor-free; Euler's formula;
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 22 Nov 2023 15:16
Last Modified: 22 Nov 2023 15:16
URI: http://real.mtak.hu/id/eprint/180672

Actions (login required)

Edit Item Edit Item