REAL

Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18

Szécsi, Dorottya and Langer, Norbert and Yoon, Sung-Chul and Sanyal, Debashis and de Mink, Selma and Evans, Christopher J. and Dermine, Tyl (2015) Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18. ASTRONOMY & ASTROPHYSICS, 581. ISSN 0004-6361

[img]
Preview
Text
1506.09132.pdf
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Context. Low-metallicity environments such as the early Universe and compact star-forming dwarf galaxies contain many massive stars. These stars influence their surroundings through intense UV radiation, strong winds and explosive deaths. A good understanding of low-metallicity environments requires a detailed theoretical comprehension of the evolution of their massive stars. Aims. We aim to investigate the role of metallicity and rotation in shaping the evolutionary paths of massive stars and to provide theoretical predictions that can be tested by observations of metal-poor environments. Methods. Massive rotating single stars with an initial metal composition appropriate for the dwarf galaxy I Zw 18 ([Fe/H]=−1.7) are modelled during hydrogen burning for initial masses of 9-300 M and rotational velocities of 0-900 km s−1. Internal mixing processes in these models were calibrated based on an observed sample of OB-type stars in the Magellanic Clouds. Results. Even moderately fast rotators, which may be abundant at this metallicity, are found to undergo efficient mixing induced by rotation resulting in quasi chemically-homogeneous evolution. These homogeneously-evolving models reach effective temperatures of up to 90 kK during core hydrogen burning. This, together with their moderate mass-loss rates, make them Transparent Wind Ultraviolet INtense stars (TWUIN star), and their expected numbers might explain the observed He II ionizing photon flux in I Zw 18 and other low-metallicity He II galaxies. Our slowly rotating stars above ∼80 M evolve into late B- to M-type supergiants during core hydrogen burning, with visual magnitudes up to 19m at the distance of I Zw 18. Both types of stars, TWUIN stars and luminous late-type supergiants, are only predicted at low metallicity. Conclusions. Massive star evolution at low metallicity is shown to differ qualitatively from that in metal-rich environments. Our grid can be used to interpret observations of local star-forming dwarf galaxies and high-redshift galaxies, as well as the metal-poor components of our Milky Way and its globular clusters.

Item Type: Article
Uncontrolled Keywords: stars: evolution; Galaxies: dwarf; stars: rotation; ultraviolet: stars; SUPERGIANTS; stars: massive;
Subjects: Q Science / természettudomány > QB Astronomy, Astrophysics / csillagászat, asztrofizika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 16 Jan 2024 15:07
Last Modified: 16 Jan 2024 15:07
URI: http://real.mtak.hu/id/eprint/184942

Actions (login required)

Edit Item Edit Item