Nagy, Gábor Péter (2014) Linear groups as right multiplication groups of quasifields. DESIGNS CODES AND CRYPTOGRAPHY, 72 (1). pp. 153-164. ISSN 0925-1022
|
Text
1210.1652.pdf Available under License Creative Commons Attribution. Download (186kB) | Preview |
Official URL: https://doi.org/10.1007/s10623-013-9860-1
Abstract
For quasifields, the concept of parastrophy is slightly weaker than isotopy. Parastrophic quasifields yield isomorphic translation planes but not conversely. We investigate the right multiplication groups of fi- nite quasifields. We classify all quasifields having an exceptional finite transitive linear group as right multiplication group. The classification is up to parastrophy, which turns out to be the same as up to the iso- morphism of the corresponding translation planes.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > Q1 Science (General) / természettudomány általában |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 25 Jan 2024 15:53 |
Last Modified: | 25 Jan 2024 15:53 |
URI: | http://real.mtak.hu/id/eprint/186015 |
Actions (login required)
![]() |
Edit Item |