Kovács, Zoltán (2001) On the Chern-Weil homomorphism in Finsler spaces. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 17 (2). pp. 131-135. ISSN 0866-0174
|
Text
amapn17_21.pdf Download (172kB) | Preview |
Official URL: http://www.emis.de/journals/AMAPN/index.html
Abstract
In this paper a framework is set up which enables the author to formulate the Chern-Weil homomorphism on a Finsler space over a manifold M. For this end the following theorem is proved: Let (∇,h) be the h-Finsler connection, f p an invariant polynomial in HM. If for the curvature R 2 of the Cartan connection ∇R 2 =0 holds, then d h f * p (R 2 ,⋯,R 2 )=0, i.e. f * p is a d h -closed 2p-form. For Landsberg spaces holds ∇R 2 =0. In the case of non-vanishing d h a natural way to define cohomology groups is discussed.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 29 Jan 2024 10:14 |
Last Modified: | 29 Jan 2024 10:14 |
URI: | http://real.mtak.hu/id/eprint/186515 |
Actions (login required)
![]() |
Edit Item |