Sabatini, Luca (2024) Products of Subgroups, Subnormality, and Relative Orders of Elements. ARS MATHEMATICA CONTEMPORANEA, 24 (1). pp. 1-9. ISSN 1855-3966 (print); 1855-3974 (online)
|
Text
amc_2975.pdf Available under License Creative Commons Attribution. Download (312kB) | Preview |
Official URL: https://doi.org/10.26493/1855-3974.2975.1b2
Abstract
Let G be a group. We give an explicit description of the set of elements x ∈ G such that x|G:H| ∈ H for every subgroup of finite index H ≤ G. This is related to the following problem: given two subgroups H and K, with H of finite index, when does |HK : H| divide |G : H|?
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | Relative order, product of subgroups, subnormal subgroup |
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
| SWORD Depositor: | MTMT SWORD |
| Depositing User: | MTMT SWORD |
| Date Deposited: | 30 Jan 2024 07:11 |
| Last Modified: | 30 Jan 2024 07:11 |
| URI: | http://real.mtak.hu/id/eprint/186605 |
Actions (login required)
![]() |
Edit Item |




