Bovdi, Victor (2006) Some properties of octonion and quaternion algebras. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 22 (2). pp. 161-170. ISSN 0866-0174
|
Text
amapn22_17.pdf Download (180kB) | Preview |
Official URL: http://www.emis.de/journals/AMAPN/index.html
Abstract
In 1988, J.R. Faulkner has given a procedure to construct an octonion algebra on a finite dimensional unitary alternative algebra of degree three over a field K. Here we use a similar procedure to get a quaternion algebra. Then we obtain some conditions for these octonion and quaternion algebras to be split or division algebras. Then we consider the implications of the found conditions to the underlying algebra, when K contains a cubic root of unity.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Alternative algebra; Composition algebra; Division algebra; Flexible algebra; Hurwitz algebra; Power associative algebra |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | Zsolt Baráth |
Date Deposited: | 31 Jan 2024 15:01 |
Last Modified: | 31 Jan 2024 15:13 |
URI: | http://real.mtak.hu/id/eprint/186877 |
Actions (login required)
![]() |
Edit Item |