REAL

Some properties of octonion and quaternion algebras

Bovdi, Victor (2006) Some properties of octonion and quaternion algebras. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 22 (2). pp. 161-170. ISSN 0866-0174

[img]
Preview
Text
amapn22_17.pdf

Download (180kB) | Preview

Abstract

In 1988, J.R. Faulkner has given a procedure to construct an octonion algebra on a finite dimensional unitary alternative algebra of degree three over a field K. Here we use a similar procedure to get a quaternion algebra. Then we obtain some conditions for these octonion and quaternion algebras to be split or division algebras. Then we consider the implications of the found conditions to the underlying algebra, when K contains a cubic root of unity.

Item Type: Article
Uncontrolled Keywords: Alternative algebra; Composition algebra; Division algebra; Flexible algebra; Hurwitz algebra; Power associative algebra
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: Zsolt Baráth
Date Deposited: 31 Jan 2024 15:01
Last Modified: 31 Jan 2024 15:13
URI: http://real.mtak.hu/id/eprint/186877

Actions (login required)

Edit Item Edit Item