REAL

Matsumoto metrics of reversible curvature

Tayebi, T. and Tabatabaeifar, T. (2016) Matsumoto metrics of reversible curvature. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 32 (1). pp. 165-200. ISSN 0866-0174

[img]
Preview
Text
32_16.pdf

Download (236kB) | Preview

Abstract

In this paper, we study the reversibility of Riemann curvature and Ricci curvature for the Matsumoto metric and prove three global results. First, we prove that a Matsumoto metric is R-reversible if and only if it is R-quadratic. Then we show that a Matsumoto metric is Ricci-reversible if and only if it is Ricci-quadratic. Finally, we prove that every weakly Einstein Matsumoto metric is Ricci-reversible.

Item Type: Article
Uncontrolled Keywords: Matsumoto metric, Riemannian curvature, Ricci curvature
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: Zsolt Baráth
Date Deposited: 07 Feb 2024 08:44
Last Modified: 07 Feb 2024 08:44
URI: http://real.mtak.hu/id/eprint/187740

Actions (login required)

Edit Item Edit Item