Tayebi, T. and Tabatabaeifar, T. (2016) Matsumoto metrics of reversible curvature. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 32 (1). pp. 165-200. ISSN 0866-0174
|
Text
32_16.pdf Download (236kB) | Preview |
Official URL: http://www.emis.de/journals/AMAPN/index.html
Abstract
In this paper, we study the reversibility of Riemann curvature and Ricci curvature for the Matsumoto metric and prove three global results. First, we prove that a Matsumoto metric is R-reversible if and only if it is R-quadratic. Then we show that a Matsumoto metric is Ricci-reversible if and only if it is Ricci-quadratic. Finally, we prove that every weakly Einstein Matsumoto metric is Ricci-reversible.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | Matsumoto metric, Riemannian curvature, Ricci curvature |
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
| SWORD Depositor: | MTMT SWORD |
| Depositing User: | Zsolt Baráth |
| Date Deposited: | 07 Feb 2024 08:44 |
| Last Modified: | 07 Feb 2024 08:44 |
| URI: | http://real.mtak.hu/id/eprint/187740 |
Actions (login required)
![]() |
Edit Item |




