De Koninck, Jean-Marie and Kátai, Imre (2016) The index of composition of the iterates of the Euler function. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 32 (2). pp. 303-311. ISSN 0866-0174
|
Text
32_24.pdf Download (114kB) | Preview |
Official URL: http://www.emis.de/journals/AMAPN/index.html
Abstract
The index of composition of an integer n ≥ 2 is defined as λ(n) = (log n)/(log γ(n)), where γ(n) stands for the largest square-free divisor of n. Let ϕ stand for the Euler totient function. We show that the index of composition of the k-fold iterate of ϕ(n) is 1 on a set of density 1 and that an analogous result holds if n runs over the set of shifted primes.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | index of composition, Euler function, shifted primes |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | Zsolt Baráth |
Date Deposited: | 07 Feb 2024 09:17 |
Last Modified: | 07 Feb 2024 09:17 |
URI: | http://real.mtak.hu/id/eprint/187746 |
Actions (login required)
![]() |
Edit Item |