REAL

Homogeneous idealization and some dual notions around comultiplication modules

Jalal Abadi, Batool Zarei and Moghimi, Hosein Fazaeli (2017) Homogeneous idealization and some dual notions around comultiplication modules. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 33 (2). pp. 175-185. ISSN 0866-0174

[img]
Preview
Text
33_18.pdf

Download (263kB) | Preview

Abstract

Let R be a commutative ring with identity, and let M be a unital R-module. D. D. Anderson proved that a submodule N of M is multiplication if and only if 0(+)N is a multiplication ideal of R(+)M, the homogeneous idealization of M. In this article, we show that a similar statement holds for comultiplication modules. We develop the tool of idealization of a module particularly in the context of cocyclic modules, self-cogenerator modules, comultiplication modules (self-cogenerated modules), couniform modules, AB5 ∗ modules, direct family and inverse family of submodules.

Item Type: Article
Uncontrolled Keywords: Cocyclic module, Self-cogenerator module, Comultiplication module, Nonsingular module
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: Zsolt Baráth
Date Deposited: 07 Feb 2024 10:28
Last Modified: 07 Feb 2024 10:38
URI: http://real.mtak.hu/id/eprint/187770

Actions (login required)

Edit Item Edit Item