Jalal Abadi, Batool Zarei and Moghimi, Hosein Fazaeli (2017) Homogeneous idealization and some dual notions around comultiplication modules. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 33 (2). pp. 175-185. ISSN 0866-0174
|
Text
33_18.pdf Download (263kB) | Preview |
Abstract
Let R be a commutative ring with identity, and let M be a unital R-module. D. D. Anderson proved that a submodule N of M is multiplication if and only if 0(+)N is a multiplication ideal of R(+)M, the homogeneous idealization of M. In this article, we show that a similar statement holds for comultiplication modules. We develop the tool of idealization of a module particularly in the context of cocyclic modules, self-cogenerator modules, comultiplication modules (self-cogenerated modules), couniform modules, AB5 ∗ modules, direct family and inverse family of submodules.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Cocyclic module, Self-cogenerator module, Comultiplication module, Nonsingular module |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | Zsolt Baráth |
Date Deposited: | 07 Feb 2024 10:28 |
Last Modified: | 07 Feb 2024 10:38 |
URI: | http://real.mtak.hu/id/eprint/187770 |
Actions (login required)
![]() |
Edit Item |