Inceboz, Hulya and Arslan, Berna and Bodaghi, Abasalt (2017) Module symmetrically amenable Banach algebras. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 33 (2). pp. 233-245. ISSN 0866-0174
| 
 | Text 33_25.pdf Download (295kB) | Preview | 
      Official URL: http://www.emis.de/journals/AMAPN/index.html
    
  
  
    Abstract
In this article, we develop the concept of symmetric amenability for a Banach algebra A to the case that there is an extra A-module structure on A. For every inverse semigroup S with the set E of idempotents, we find necessary and sufficient conditions for the l 1 (S) to be module symmetrically amenable (as a l 1 (E)-module). We also present some module symmetrically amenable semigroup algebras to show that this new notion of amenability is different from the classical case introduced by Johnson.
| Item Type: | Article | 
|---|---|
| Uncontrolled Keywords: | Banach modules, module symmetric amenability, semigroup algebra, inverse semigroup | 
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika | 
| SWORD Depositor: | MTMT SWORD | 
| Depositing User: | Zsolt Baráth | 
| Date Deposited: | 07 Feb 2024 11:47 | 
| Last Modified: | 07 Feb 2024 11:47 | 
| URI: | http://real.mtak.hu/id/eprint/187781 | 
Actions (login required)
|  | Edit Item | 



