Shi, Wei and Nemes, Gergő and Wang, Xiang-Sheng and Wong, Roderick (2023) Error bounds for the asymptotic expansions of the Hermite polynomials. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 153 (2). pp. 417-440. ISSN 0308-2105
|
Text
2109.01054v2.pdf Available under License Creative Commons Attribution. Download (257kB) | Preview |
Abstract
In this paper, we present explicit and computable error bounds for the asymptotic expansions of the Hermite polynomials with Plancherel–Rotach scale. Three cases, depending on whether the scaled variable lies in the outer or oscillatory interval, or it is the turning point, are considered separately. We introduce the “branch cut” technique to express the error terms as integrals on the contour taken as the one-sided limit of curves approaching the branch cut. This new technique enables us to derive simple error bounds in terms of elementary functions. We also provide recursive procedures for the computation of the coefficients appearing in the asymptotic expansions.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | error bounds; asymptotic expansions; Hermite polynomials |
Subjects: | Q Science / természettudomány > Q1 Science (General) / természettudomány általában |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 03 Apr 2024 07:44 |
Last Modified: | 03 Apr 2024 07:44 |
URI: | https://real.mtak.hu/id/eprint/191450 |
Actions (login required)
![]() |
Edit Item |