Böröczky, Károly (Ifj.) and Figalli, Alessio and Ramos, João P. G. (2024) A quantitative stability result for the Prékopa–Leindler inequality for arbitrary measurable functions. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, Online. ISSN 0294-1449
|
Text
2201.11564v1.pdf Available under License Creative Commons Attribution. Download (471kB) | Preview |
Official URL: https://doi.org/10.4171/aihpc/97
Abstract
We prove that if a triplet of functions satisfies almost equality in the Pr´ekopa–Leindler inequality, then these functions are close to a common log-concave function, up to multiplication and rescaling. Our result holds for general measurable functions in all dimensions, and provides a quantitative stability estimate with computable constants.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 05 Apr 2024 08:58 |
Last Modified: | 05 Apr 2024 08:58 |
URI: | https://real.mtak.hu/id/eprint/191940 |
Actions (login required)
![]() |
Edit Item |