REAL

A quantitative stability result for the Prékopa–Leindler inequality for arbitrary measurable functions

Böröczky, Károly (Ifj.) and Figalli, Alessio and Ramos, João P. G. (2024) A quantitative stability result for the Prékopa–Leindler inequality for arbitrary measurable functions. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, Online. ISSN 0294-1449

[img]
Preview
Text
2201.11564v1.pdf
Available under License Creative Commons Attribution.

Download (471kB) | Preview

Abstract

We prove that if a triplet of functions satisfies almost equality in the Pr´ekopa–Leindler inequality, then these functions are close to a common log-concave function, up to multiplication and rescaling. Our result holds for general measurable functions in all dimensions, and provides a quantitative stability estimate with computable constants.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 05 Apr 2024 08:58
Last Modified: 05 Apr 2024 08:58
URI: https://real.mtak.hu/id/eprint/191940

Actions (login required)

Edit Item Edit Item