REAL

Detection of plant cadmium toxicity by monitoring dielectric response of intact root systems on a fine timescale

Cseresnyés, Imre and Takács, Tünde Mária and Füzy, Anna (2024) Detection of plant cadmium toxicity by monitoring dielectric response of intact root systems on a fine timescale. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH. ISSN 0944-1344

[img]
Preview
Text
s11356-024-33279-w.pdf
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

The root dielectric response was measured on a minute scale to assess its efficiency for monitoring short-term cadmium (Cd) toxicity non-destructively. Electrical capacitance (C R ), dissipation factor (D R ) and electrical conductance (G R ) were detected during the 24 to 168 h after Cd treatment (0, 20, 50 mg Cd 2+ kg –1 substrate) in potted maize, cucumber and pea. Stress was also evaluated by measuring leaf chlorophyll content, F v /F m and stomatal conductance (g s ) in situ , and shoot and root mass and total root length after harvest. C R showed a clear diurnal pattern, reflecting the water uptake rate, and decreased significantly in response to excessive Cd due to impeded root growth, the reduced tissue permittivity caused by accelerated lignification, and root ageing. Cd exposure markedly increased D R , indicating greater conductive energy loss due to oxidative membrane damage and enhanced electrolyte leakage. G R , which was coupled with root hydraulic conductance and varied diurnally, was increased transiently by Cd toxicity due to enhanced membrane permeability, but declined thereafter owing to stress-induced leaf senescence and transpiration loss. The time series of impedance components indicated the comparatively high Cd tolerance of the applied maize and the sensitivity of pea cultivar, which was confirmed by visible shoot symptoms, repeated physiological investigations and biomass measurements. The results demonstrated the potential of single-frequency dielectric measurements to follow certain aspects of the stress response of different species on a fine timescale without plant injury. The approach can be combined with widely used plant physiological methods and could contribute to breeding crop genotypes with improved stress tolerance.

Item Type: Article
Uncontrolled Keywords: Electrical capacitance, Dissipation factor, In situ root methods, Membrane permeability, Root conductance, Stomatal conductance, Transpiration, Water uptake rate
Subjects: Q Science / természettudomány > QE Geology / földtudományok
Q Science / természettudomány > QH Natural history / természetrajz > QH301 Biology / biológia
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 12 Apr 2024 09:31
Last Modified: 12 Apr 2024 09:31
URI: https://real.mtak.hu/id/eprint/192441

Actions (login required)

Edit Item Edit Item