Házy, Attila and Makó, Judit (2023) Counter-examples to Breckner-convexity. MULTIDISZCIPLINÁRIS TUDOMÁNYOK: A MISKOLCI EGYETEM KÖZLEMÉNYE, 13 (3). pp. 74-80. ISSN 2062-9737
|
Text
2275_pub.pdf - Published Version Available under License Creative Commons Attribution. Download (724kB) | Preview |
Official URL: https://doi.org/10.35925/j.multi.2023.3.8
Abstract
In this paper, we examine convexity type inequalities. Let D be a nonempty convex subset of a linear space, c>0 and α:D-D→R be a given even function. The inequality f((x+y)/2) ≤ c f(x) + c f(y) + α(x-y) (x,y ∈ D) is the focus of our examinations. We will construct an example to show that for c=1, this Jensen type inequality does not imply the convexity of the function. Then, we compare this inequality with Hermite–Hadamard type inequalities.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | convexity, Breckner-convexity, counter examples |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 25 Apr 2024 08:59 |
Last Modified: | 25 Apr 2024 08:59 |
URI: | https://real.mtak.hu/id/eprint/193079 |
Actions (login required)
![]() |
Edit Item |