REAL

The group invertibility of matrices over Bézout domains

Liu, Dayong and Fang, Aixiang (2024) The group invertibility of matrices over Bézout domains. Miskolc Mathematical Notes, 25 (1). pp. 373-381. ISSN 1787-2413

[img]
Preview
Text
4386.pdf

Download (1MB) | Preview

Abstract

Let R be a Bézout domain, and let A,B,C ∈ Rn×n with ABA = ACA. If AB and CA are group invertible, we prove that AB is similar to CA. Moreover, we have (AB)# is similar to (CA)#. This generalize the main result of Cao and Li (Group inverses for matrices over a Bézout domain, Electronic J. Linear Algebra, 18 (2009), 600–612).

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika
Depositing User: Kotegelt Import
Date Deposited: 04 Jun 2024 09:30
Last Modified: 04 Jun 2024 09:30
URI: https://real.mtak.hu/id/eprint/196482

Actions (login required)

Edit Item Edit Item