Liu, Dayong and Fang, Aixiang (2024) The group invertibility of matrices over Bézout domains. Miskolc Mathematical Notes, 25 (1). pp. 373-381. ISSN 1787-2413
|
Text
4386.pdf Download (1MB) | Preview |
Official URL: https://doi.org/10.18514/MMN.2024.4386
Abstract
Let R be a Bézout domain, and let A,B,C ∈ Rn×n with ABA = ACA. If AB and CA are group invertible, we prove that AB is similar to CA. Moreover, we have (AB)# is similar to (CA)#. This generalize the main result of Cao and Li (Group inverses for matrices over a Bézout domain, Electronic J. Linear Algebra, 18 (2009), 600–612).
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
Depositing User: | Kotegelt Import |
Date Deposited: | 04 Jun 2024 09:30 |
Last Modified: | 04 Jun 2024 09:30 |
URI: | https://real.mtak.hu/id/eprint/196482 |
Actions (login required)
![]() |
Edit Item |